python高级(二)—— python内置序列类型

本文主要内容

  序列类型分类:

    (1)容器序列、扁平序列

    (2)可变序列、不可变序列

  列表推导式

  生成器表达式

  元组拆包

  切片

  排序(list.sort方法和sorted函数)

  bisect

 

python高级——目录

  文中代码均放在github上:https://github.com/ampeeg/cnblogs/tree/master/python高级

 

python高级(二)—— python内置序列类型,python内置序列类型

序列类型分类

 

   所谓序列,即元素有序排列,python标准库用C实现了丰富的序列类型,按照序列中是否可存放不同类型的数据分为”容器序列”和”扁平序列”。

  容器序列可以存放统统类型的数据,而扁平序列只能存放一种类型
     

    容器序列:list、tuple、collections.deque   
    扁平序列:str、bytes、bytearray、memoryview、array.array
  
  按照是否能修改的标准序列又可分为"可变序列"和"不可变序列":      
    可变序列:list、bytearrary、array.arrary、collections.deque和memoryview   
    不可变序列:tuple、str和bytes

  由于可变序列继承自不可变序列,所以可变序列继承的方法也较多,下面看看它们包含的方法:   
方法名 不可变序列 可变序列
__contains__  有 有 
__iter__  有  有 
 __len__  有  有 
__getitem__   有  有 
__reversed__   有  有 
index   有  有 
count   有  有 
__setitem__    有 
__delitem__   有 
insert   有 
append   有 
reverse   有 
extend   有 
pop   有 
remove   有 
__iadd__    有 

  

  我们以tuple和list类型为例,对比源代码中的方法,可以明显发现list的方法多于tuple:

  

永利皇宫463手机版 1

 

本文主要内容

  序列类型分类:

    (1)容器序列、扁平序列

    (2)可变序列、不可变序列

  列表推导式

  生成器表达式

  元组拆包

  切片

  排序(list.sort方法和sorted函数)

  bisect

 

  文中代码均放在github上:

永利皇宫463手机版, 

列表推导式

# 列表推导式生成的是列表,会占用系统内存
# 基本语法

list_1 = [x for x in range(1, 20)]
list_2 = [x ** 2 for x in range(1, 20)]


print(list_1)  # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
print(list_2)  # [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361]

# 笛卡尔积型的列表推导式
list_3 = [(x, y) for x in range(1, 3)        # 1,2
                 for y in range(7, 10)]      # 7、8、9

                                             # 该表达式会先将1分别和7、8、9组合,然后再拿2和7、8、9组合,共6对
print(list_3)  # [(1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9)]


list_4 = [x+y for x in range(1, 3)
                 for y in range(7, 10)]

print(list_4)   # [8, 9, 10, 9, 10, 11]

# 还可以添加if语句
l = [1, 3, 4, 33, 45, 36, 422, 34, 67, 23, -4, -7, -345, 46, -6, -45, 32, -8, -4, 67, -4]

list_5 = [x for x in l if x > 0]   # 只取出大于0的生成列表
print(list_5)                      # [1, 3, 4, 33, 45, 36, 422, 34, 67, 23, 46, 32, 67]

 

序列类型分类

 

   所谓序列,即元素有序排列,python标准库用C实现了丰富的序列类型,按照序列中是否可存放不同类型的数据分为”容器序列”和”扁平序列”。

  容器序列可以存放统统类型的数据,而扁平序列只能存放一种类型      

    容器序列:list、tuple、collections.deque   
    扁平序列:str、bytes、bytearray、memoryview、array.array
  
  按照是否能修改的标准序列又可分为"可变序列"和"不可变序列":      
    可变序列:list、bytearrary、array.arrary、collections.deque和memoryview   
    不可变序列:tuple、str和bytes

  由于可变序列继承自不可变序列,所以可变序列继承的方法也较多,下面看看它们包含的方法:   
方法名 不可变序列 可变序列
__contains__  有 有 
__iter__  有  有 
 __len__  有  有 
__getitem__   有  有 
__reversed__   有  有 
index   有  有 
count   有  有 
__setitem__    有 
__delitem__   有 
insert   有 
append   有 
reverse   有 
extend   有 
pop   有 
remove   有 
__iadd__    有 

  

  我们以tuple和list类型为例,对比源代码中的方法,可以明显发现list的方法多于tuple:

  

 

生成器表达式

# 虽然列表推导式可以用来初始化元组、数组或其他序列类型,但是列表推导式会直接生成列表,占用内存
# 而生成器遵守了迭代器协议,可以逐个产出元素,而不是先建立一个完整的列表


# 生成器表达式直接将推导式的方括号换成圆括号即可

g = (x for x in range(1, 10000))

print(g)    # <generator object <genexpr> at 0x105c0efc0> :生成器对象


from collections import Iterable, Iterator

if isinstance(g, Iterable):
    print("iterable")          # 输出iterable: 说明生成器g是可迭代的

if isinstance(g, Iterator):
    print("iterator")          # 输出iterator:说明生成器g是迭代器

 

  下面我们来对比一下列表推导式和生成器的效率

# 比较列表推导式和生成器
import time

start_time = time.time()
l = [x for x in range(1000000)]
print(time.time() - start_time)     # 0.1361069679260254

start_time = time.time()
g = (x for x in range(1000000))
print(time.time() - start_time)     # 1.1205673217773438e-05

# 可见,生成器远快于推导式

 

列表推导式

# 列表推导式生成的是列表,会占用系统内存
# 基本语法

list_1 = [x for x in range(1, 20)]
list_2 = [x ** 2 for x in range(1, 20)]


print(list_1)  # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
print(list_2)  # [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361]

# 笛卡尔积型的列表推导式
list_3 = [(x, y) for x in range(1, 3)        # 1,2
                 for y in range(7, 10)]      # 7、8、9

                                             # 该表达式会先将1分别和7、8、9组合,然后再拿2和7、8、9组合,共6对
print(list_3)  # [(1, 7), (1, 8), (1, 9), (2, 7), (2, 8), (2, 9)]


list_4 = [x+y for x in range(1, 3)
                 for y in range(7, 10)]

print(list_4)   # [8, 9, 10, 9, 10, 11]

# 还可以添加if语句
l = [1, 3, 4, 33, 45, 36, 422, 34, 67, 23, -4, -7, -345, 46, -6, -45, 32, -8, -4, 67, -4]

list_5 = [x for x in l if x > 0]   # 只取出大于0的生成列表
print(list_5)                      # [1, 3, 4, 33, 45, 36, 422, 34, 67, 23, 46, 32, 67]

 

元组拆包

# 我们经常这样给两个变量同时赋值
a, b = 1, 2
print(a, b)     # 1 2

# 还可以这样
a, b = [1, 2]
print(a, b)     # 1 2

# 也可以这样
a, b = (1, 2)
print(a, b)     # 1 2

# 甚至可以这样
a, b = "ab"
print(a, b)     # a b

'''
    像以上这样连续的赋值方式,右边可以使用逗号隔开;也可以是序列。

    当拆包赋值的是序列时,python解释器会先找该序列中的__iter__方法,如果该方法不存在,则寻找__getitem__方法。

    接下来说其他用法
'''

# 赋值后优雅地交换两个变量
a, b = (1, 2)
a, b = b, a
print(a, b)        # 2 1

# 使用*号来处理多余的数据
a, b, *s = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print(a, b, s)        # 1 2 [3, 4, 5, 6, 7, 8, 9]
                      # 这样从第三个元素开始的所有值都赋给了s

a, b, *s = (1, 2, 3, 4, 5, 6, 7, 8, 9)
print(a, b, s)        # 1 2 [3, 4, 5, 6, 7, 8, 9]
                      # 注意,本来是元组,赋之后的s变成了列表. 如果s为空的话也会返回空列表

*s, a, b = (1, 2, 3, 4, 5, 6, 7, 8, 9)
print(s, a, b)        # [1, 2, 3, 4, 5, 6, 7] 8 9
                      # *s也可以放在前面

a, *s, b = (1, 2, 3, 4, 5, 6, 7, 8, 9)
print(a, s, b)        # 1 [2, 3, 4, 5, 6, 7, 8] 9
                      # *s也可以放在中间

# 嵌套元组拆包
a, b, (c, d) = (1, 2, (3, 4))
print(a, b, c, d)     # 1 2 3 4
                      # 只要按照右边的形式就可赋值

a, b, *c = (1, 2, (3, 4))
print(a, b, c)     # 1 2 [(3, 4)]

 

永利皇宫463手机版 2永利皇宫463手机版 3

 1 ################################
 2 #
 3 # 以下的例子用以说明拆包赋值时,解释器会按照__iter__、__getitem__的顺序调用类中的方法
 4 #
 5 ################################
 6 class Foo:
 7     def __init__(self, s):
 8         self.s = s
 9 
10     def __iter__(self):
11         print("iter")
12         return iter(self.s)
13 
14     def __getitem__(self, item):
15         return self.s[item]
16 
17 if __name__ == "__main__":
18     foo = Foo("sdfafasfasf")
19     a, b, *s = foo
20     print(a, b)

拆包赋值的内部实现

 

  之前我们通过源码已经对比过list和tuple类中的方法和属性,下面列出《流畅的python》整理的列表和元组的方法及属性:

表 列表或元组的方法和属性

  列  表 元  组
s.__add__(s2)
· ·
s.__iadd__(s2) ·  
s.append(e) ·  
s.clear() ·  
s.__contains__(e) · ·
s.copy() ·  
s.count(e) · ·
s.__delitem__(p) ·  
s.extend(it) ·  
s.__getitem__(p) · ·
s.__getnewargs__()   ·
s.index(e) · ·
x.insert(p,e) ·  
s.__iter__() · ·
s.__len__() · ·
s.__mul__(n) · ·
s.__imul__(n) ·  
s.__rmul__(n) · ·
s.pop([p]) ·  
s.remove(e) ·  
s.reverse() ·  
s.__reversed__() ·  
s.__setitem__(p,e) ·  
s.sort([key], [reverse]) ·  

   

  说明:以上元组中不加黑点的不代表一定不能这样使用,只是其作用和列表不同(说明里面有解释)。例如两个元组a和b进行增量赋值a+=b也是可以的,只是这个操作不是就地拼接,而是生成了新的元组。

生成器表达式

# 虽然列表推导式可以用来初始化元组、数组或其他序列类型,但是列表推导式会直接生成列表,占用内存
# 而生成器遵守了迭代器协议,可以逐个产出元素,而不是先建立一个完整的列表


# 生成器表达式直接将推导式的方括号换成圆括号即可

g = (x for x in range(1, 10000))

print(g)    # <generator object <genexpr> at 0x105c0efc0> :生成器对象


from collections import Iterable, Iterator

if isinstance(g, Iterable):
    print("iterable")          # 输出iterable: 说明生成器g是可迭代的

if isinstance(g, Iterator):
    print("iterator")          # 输出iterator:说明生成器g是迭代器

 

  下面我们来对比一下列表推导式和生成器的效率

# 比较列表推导式和生成器
import time

start_time = time.time()
l = [x for x in range(1000000)]
print(time.time() - start_time)     # 0.1361069679260254

start_time = time.time()
g = (x for x in range(1000000))
print(time.time() - start_time)     # 1.1205673217773438e-05

# 可见,生成器远快于推导式

 

发表评论

电子邮件地址不会被公开。 必填项已用*标注